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ENTROPY INTERPRETATION OF GOODNESS OF FIT TESTS

Emanuel Parzen
1-. Institute of Statistics

Texas A&M University

ABSTRACT. This paper describes a synthesis of statistical reasoning
called FUN.STAT (because it is fun; functional (useful); based on functional
analysis; estimates functions; and all graphs are of functions). FUN.STAT has
three important components: quantile and density-quantile signatures of
populations, entropy and information measures, and functional statistical
inference.

A FUN.STAT approach to the problem of identifying the probability
distribution F(x) of a random variable X from a random sample is outlined.
To identify Fo in the location-scale parameter model F(x) = F ((x-p)/), we

estimate entropy difference a = H°(f) - H(f). H(f) is Shannon entropy and
0
H (f) = log o + H(f ) is entropy of the assumed model (which may maximize

0
entropy). Estimators H,, H2, H3 of H(f) are defined which are respectively

fully parametric, fully non-parametric, and parametric-select. Significance
levels for ' are obtained by Monte Carlo methods. The family of
parametric-select estimators of A may provide optimum tests of Fo (such as
normal or exponential) and estimators of F when one rejects Fo .

KEY WORDS: Entropy-based statistical inference, goodness of fit tests,
test for normality, Shapiro-Wilk statistic, quantile, density-quantile,
quantile-density, autoregressive density estimator.

1. INTRODUCTION. Let X1,...,X n be a random sample of a continuous

random variable X with distribution function F(x) = Pr[X<x], -.<x<-, and

quantile function Q(u) = F- (u), Oul. Tests of normality or exponentiality
are special cases of a location-sclT parameter model, which we denote by the
hypothesis

Ho: F(x)Q(u)- + Qo(U)

where F (x) is a specified distribution with quantile function Qo(u). Table 1
0

lists Fo and Qo for various standard distributions.

Research supported by the U. S. Army Research Office Grant DAAG 29-80-C-0070.
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Table 1. STANDARD DISTRIBUTION FUNCTIONS

AND QUANTILE FUNCTIONS

Name F(x) Q(u)

Normal olx) = fx W(y) dy -l(u)

#(x) - (2w) "  exp - x2

Exponential 1 - e x  log (l-u)-1

Weibull, 1 - e , x 0 log 0-u)

Quantile shape c . I

parameter B

Extreme value I - e-ex  log log (l-u)

of minimum

Extreme value e e x  - log log u 1

of maximum

Log normal #(log x), x>O exp 0l (u)

Logistic 1-(l+ex) "1  log T

*
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J* . Many statistics have been introduced by statisticians to test the
composite (location and scale parameters unspecified) hypothesis of normality.
A superior omnibus test of normality (in terms of power) seems to be provided
by a test statistic W = 02/al , where 01 and ;2 are scale estimators defined
as follows: ;1 i sample standard deviation, while a2 is a linear combination
of order statistics estimator of a. We call W a statistic of Shapiro-Wilk

*' type because it is a variant of a test introduced by Shapiro and Wilk (1965)
and Shapiro and Francid (1972).

The question arises: to discover a motivation for the W statistic which
explains the source of its power, and to use this insight to extend W to
other distributions Fo . In this paper we propose that the power of W can be

explained by representing it as an "entropy difference" test statistic. We
show that the test statistic for normality introduced by Vasicek (1977) is
also an entropy difference statistic, as are test statistics introduced in
Parzen (1979).

2. INFORMATION DIVERGENCE AND ENTROPY. To compare two distribution
functions F(x) and G(x) with probability densities f(x) and g(x), a useful
measure is information divergence, defined by

I(f;g) = ]_.{-log 9(x)} f(x) dx

It can be decomposed into cross-entropy

H(f;g) = J'.(-log g(x)1 f(x) dx

and entropy

H(f) = H(f;f) = f_.{-log f(x)) f(x) dx

. by the important identity

0 < I(f;g) = H(f;g) - H(f).

To estimate entropy it is useful to express it in terms of the quantile
density function q(u) and density-quantile function fQ(u) defined by

q(u) = Q'(u). fQ(u) - f(Q(u)) = fq(u)) I  Accession For
• ' NTIS GRA&I

4 By making the change of variable u = F(x) one can show that DTIC TABc:.Unannounced El
SJustification

H(f) fo1 - log fQ(u) du

yDistribution/

,.2, " J log q(u) du.log qAvailability Codes

Dist scia].
IAv A i Ird/or"

...... .. . . . .. . . ..
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Under the hypothesis H that F(x) = F ((X-u)/o), a location-scale model,
0 0

q(u) - qo(U) and

Hf) log a + H(fo).

.3. ENTROPY DIFFERENCE TO TEST GOODNESS OF FIT. To test the hypothesis
Ho we propose to investigate (and eventually establish how to use optimally)

test statistics which are entropy-difference statistics

.(f) = H°(f) - H(f)

where H°(f) is a parametric evaluation of the entropy of f, evaluated under
the assumption that it obeys Ho, defined by

H°(f) = log a + H(fo).

while H(f) is a non-parametric evaluation of d(f), usually most conveniently
obtained by

H(f) = log q(u) du

7A. To estimate H(f) we have three types of estimators which we call

H I fully parametric estimator,

H1 fully non-parametric estimator,

H13 smooth or parametric select estimator

Similarly to estimate H°(f) we have several types of estimators depending on
the estimator &. we adopt for a; thus

H = log ^j + Hf o)

Three important possibilities for 0j are:

;j maximum likelihood estimator,

02 optimal linear combination of order statistics estimator

03 estimator of score deviation 03 = f0 foQo(u) q(u) du.

Under Ho these estimators are all asymptotically efficient estimators of a.

7.

....,............~ .... _..........- .*... ..........
i . .. " ' ' " ' " ' "' ' " • " " ' " " " " -.

"
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While one can conceive of about 9 possible estimators of the entropy
difference A, we discuss only three estimators which we denote A,, A12,

;nd A33

4. ENTROPY-DIFFERENCE JNTERPRETATION OF SHAPIRO-WILK STATISTIC
To test the hypothesis Ho: X is N(P,o 2), a test statistic W of

Shapiro-Wilk type is of the form

W = 02 a1

where oI is the sample standard deviation and

;2 Z n # 1 (j-0.5) X 1 0- 0 i~.5 12~1

is an asymptotically efficient estimator of a based on linear combinations

of the order statistics X(1)< ...<X (n) of the random sample. The first step

in the entropy interpretation of W is to consider instead the statistic

All = - logW = ogl - log2= -H

where [with fo(x) a *(x) = (2) - exp -() X2, and H(fo) (I + log 2w)]
o 2

HU = log 01 + H(fO)1

is an estimator of H°(f) based on ;1, and H1 is a purely parametric estimator

of H(f) based on the parametric estimator 02; note H, = H0.

Significance levels for the entropy-difference statistic Ai = - log W
are obtainable from tables of the W statistic [for example, Filliben (1975)].
An example of 5% significance levels (for accepting normality) are

All < 0.05, for sample size n = 20 ;

All < 0.023, for sample size n = 50

S. ENTROPY-DIFFERENCE INTERPRETATION OF VASICEK STATISTIC
To test the hypothesis H X is N(P.az) Vasicek (1977) proposes a

statistic which is equivalent0 to

where is an estimator of the parametric evaluation H°(f) of entropy, and
,I

|0
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H2 is a fully non-parametric estimator of H(f) based on the ga or leap (of
order 2v) estimator

v~n_ T+ ) ,,n+l (X ~ .-

"'j D (Xlj+v) - X(j)) jv+l,...,n-v

of q(j/(n+l)), and

;*- n-v -
H2  n-= I ~L

jv+l V

Some significance levels of A1 2 are given in Table 2; they are transformations

of the significance levels given by Vasicek (1977) and obtained by Monte-Carlo
* simulation.

6. ENTROPY-DIFFERENCE INTERPRETATION OF PARZEN GOODNESS OF FIT PROCEDURE

To test the general hypothesis H : X is F (- ), Parzen (1979) proposes
forming raw estimators a(u) of 0 0

d(u) = foQo(u) q(u)
0

where oo = fo foQo(t) q(t) dt. To form d(u) and o we replace q(u) by the

least smooth gap estimator q2 (u). Smooth estimators dm(u) of d(u) are

formed by the autoregressive method. From estimators of the pseudo-correlations

p(v) = o e2' iuv d(u) du, v=O,+l,...,+m

one estimates the coefficients of the autoregressive order m approximator

dm(u) = Km 11+ a (l) 2wiu +.. + m) e2niu m  2

to d(u). The coefficient Km plays an important role in entropy calculations
since

Jl -log dm(u) du =-log Km

can be regarded as an estimator A3 3 = - log d(u) du of A.

This formula, which we prove below, provides an entropy-difference
interpretation of the goodness of fit procedures in Parzen (1979).

To prove this interpretation of A3 3, write

- log d(u) " log ao - log foQo(u)-log q(u)
00

...-
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Therefore

I - log d(u) du = H°(f) - H(f)

"* is an entropy-difference.

The autoregressive estimator dm(u) of d(u) provides a parametric
select estimator of q(u) by

'-- A)
,-u) = co m(u) qo(u)

A parametric select estimator of H(f) is

,I 1 log c(u) du
3 10

-:f1 log dm(u) du + 03

where

0H3  = log -o  + H( 0

is an estimator of H0(f) based on O .

The parametric select entropy-difference test statistic A33should be

denoted A33  because it depends on the order m of the autoregressive

estimator dm(u) of d(u). Significance levels Of A33m derived by a very,'m
approximate Monte Carlo simulation (in the case of testing for normality)
are given in Table 2. They show hat the parametric select estimators of A
provide a smooth progression of significance levels from the fully parametric
estimators of A to the fully non-parametric estimators. In practice, we
recommend adaptive determination of the order m by the data, rather than
choosing a fixed order m.

It may be useful to use a rough approximation to the 5% significance

levels of A33,m which is provided by 2m/n. A criterion for accepting Ho: X

is F (X-) is:
0 CY

A A 2m m ,2,
A33 , m -logK - _n , ...

One rejects Ho if there exists a value of m for which the Akaike-type criterion

AIC(m) n + log K_.. 0

-.- 

.
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the value of m which minimizes AIC(m) is chosen as an "optimal" value m.

An optimal parametric-select estimator of the true quantile-density function
q(u) is

(u) = o d(u) qo(u)0 0

7. CONCLUSION
We believe that the interpretation given in this paper of powerful

goodness of fit procedures as entropy-difference statistics provides a
striking demonstration of the FUN.STAT synthesis of statistical reasoning.
In addition to elegance of the theory, very practical and implement3ble
procedures are obtained.

The parametric select estimators A33,m of entropy-difference test

statistics for goodness of fit have for ml approximately the properties of
fully parametric estimators (such as Shapiro-Wilk Z11) and have for large
values of m approximately the properties of fully non-parametric estimators
(such as Vasicek A 2). Thus it appears the series A33 . provide all the test-
statistics required. Further the autoregressive approlch provides
non-parametric estimators of the true distribution when one rejects the null
hypothesis Ho.

One may find that a sample passes the goodness of fit procedure for two
null hypotheses. An appealing procedure, whose properties remain to be
investigated, is to choose that null hypothesis for which Z33m is always less
than the corresponding statistic for the other hypothesis. ,

The entropy-difference statistics A33 m are implemented in our one-sample

univariate data analysis computer program ONESAM. Table 3 lists auto-
regressive estimates of entropy-difference when testing for normality data
sets in Stigler (1977). An asterisk indicates a data set which is not
normal in our judgement.

In Table 2 we report significance level.s for A12 obtained (by Monte Carlo
calculations) by Dudewicz and van der Muelen (1981) in the case of testing for
uniformity rather than normality.

The closeness of the Dudewicz-van der Muelen levels to the Vasicek
levels suggests a conjecture, which remains to be proved, that the entropy-
difference statistics have distributions which are approximately the same

for all null hypotheses Ho: X is F
0 00

A final noteworthy feature is that the autoregressive method of
estimating quantile-density functions and density-quantile functions,
introduced in Parzen (1979), can be shown to have a maximum entropy
property [compare Parzen (1982)].
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Table 2. 5% SIGNIFICANCE LEVELS FOR ENTROPY DIFFERENCE STATISTICS

Accept Ho: X is N(P,c 2) for some v and a if entropy difference is less than

threshold given.
AA A

Ali A33,m A 12

Autoregressive order m Vasicek gap estimator V.(u)
Sample Shapiro- Monte Carlo 5% level (Dudewicz-van der Muelen
Size n Wilk (rough approximation 2m/n)m~ =2 m 3 = m 5 v=5 v=4 v=3 v=2 v=l

20 .05 .141 .235 .299 .378 .398 .40 .40 .43 .61

(.10) (.20) (.30) (.40) (.50) (.43 .43 .47 .66)

50 .023 .045 .081 .126 .153 .176 .21 .21 .23

(.04) (.08) (.12) (.16) (.20) (.22 .22 .24)

Shapiro-Wilk and Vasicek levels are based on Monte Carlo simulation of normal;
Dudewicz-van der Muelen levels are based on Monte Carlo simulation of uniform.

One can conjecture a relation between gap order 2v and autoregressive order
m for ttie corresponding estimators to have similar distributions and therefore
similar significance levels:

(2v) m = n = sample size

To understand what this conjecture is alleging note that for n=20, m=4 is
similar to 2v = 6; for n=50, m=6 is similar to 2v = 8.

When one uses gap estimators of q(u), and thus of entropy, one has the
problem of determining the order 2v. One can more easily develop criteria
for determining the order m of autoregressive estimators of q(u).
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Table 3. ANALYSIS OF STIGLER (1977) DATA SETS BY ONESAM PROGRAM

l-Opt.-

l(v)2 A33 AIC(m) Opt.
'm ~Order

Stigler Sample
Data Size ,
Set v=l v=2 v=3 m=l m=2 m-3 m=l m=2 m=3 m

1 18 .042 .025 .057 .04 .08 .17 .07 .15 .17 0

*2 17 .193 .030 .042 .21 .27 .34 -.10 -.03 .02 1

: 3 18 108 .02 .047 .11 .14 .17 -.00 .08 .16 0

4 21 .057 .159 .041 .06 .20 .21 .04 -.01 .08 2

5 21 .146 .015 .041 .16 .17 .22 -.06 .01 .07 1

6 21 .047 .102 .002 .05 .13 .15 .05 .06 .14 0

7 21 .041 .046 .040 .04 .11 .18 .05 .08 .11 0

8 21 .079 .047 .011 .08 .18 .27 .01 .01 .02 0
*9 20 .285 .235 .124 .34 .42 .42 -.24 -.22 -.12 1

10 20 .027 .059 .045 .03 .09 .15 .07 .11 .15 0

11 26 .046 .006 .033 .05 .06 .11 .03 .09 .12 0

12 20 .107 .001 .023 .11 .13 .13 -.01 .07 .17 1

13 20 .084 .027 .063 .09 .16 .20 .01 .04 .10 0
*14 20 .162. .094 .130 .18 .22 .39 -.08 -.02 -.09 3

15 20 .066. .006 .001 .07 .09 .09 .03 .11 .21 0
*16 20 .080 .056 .093 .08 .17 .44 .01 .03 -.14 3

17 23 .065 .014 .038 .07 .11 .14 .02 .07 .12 0

19 29 .002 .019 .008 .00 .02 .03 .07 .12 .18 0

4i-

" , , - " . ' , . -, -, . ' - - - ". , z- . -. • - % .. - ... .. . ..... . . . .. ... ...



'. : 11

REFERENCES

Dudwicz, E. J. and Van der Muelen, E. C. (1981). Entropy-Based Tests of
Uniformity Journal of the American Statistical Association,
76, 967-974.

Filliben, J. J. (1975). The probability plot correlation coefficient
test for normality, Technometrics, 17, 111-117.

Parzen, E. (1979). Nonparametric statistical data modeling. Journal of
the American Statistical Association, 74, 105-131.

Parzen, E. (1982). Maximum entropy interpretation of autoregressive
spectral densities. Statistics and Probability Letters, 1, 2-6.

Shapiro, S. S. and Francis, R. S. (1972). Approximate analysis of variance
test for normality. J.: American Statistical Association, 67,
215-216.

- Shapiro, S. S. and Wilk, M. B. (1968). An analysis of variance test for

normality, Biometrika, 52, 591-611.

Shapiro, S. S., Wilk, M. B. and Chen, H. J. (1968); A comparative study

of various tests for normality, J. American Statistical
Association, 63, 1343-1372.

" Stigler, S. M. (1977) Do robust estimators work with real data, Annals
of Statistics, 5, 1055-1098.

Vasicek, 0. (1976). A Test for Normality Based on Sample Entropy, Journal
of the Royal Statistical Society, B, 38, 54-59.

.

k.

r



p

H. m


